Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays
نویسندگان
چکیده
This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.
منابع مشابه
Gravitational wave astronomy and cosmology
The first direct observation of gravitational waves’ action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mas...
متن کاملProjected Constraints on Lorentz-Violating Gravity with Gravitational Waves
Gravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary system...
متن کاملStability of pulsar rotational and orbital periods
Millisecond and binary pulsars are the most stable astronomical standards of frequency. They can be applied to solving a number of problems in astronomy and time-keeping metrology including the search for a stochastic gravitational wave background in the early universe, testing general relativity, and establishing a new time-scale. The full exploration of pulsar properties requires that proper ...
متن کاملGravitational wave astronomy - astronomy of the 21st century
An enigmatic prediction of Einstein’s general theory of relativity are gravitational waves. With the observed decay in the orbit of the Hulse-Taylor binary pulsar agreeing within a fraction of a percent with the theoretically computed decay from Einstein’s theory the existence of gravitational waves was firmly established. Currently there is a worldwide effort to detect gravitational waves with...
متن کاملEstimates of maximum energy density of cosmological gravitational-wave backgrounds
The recent claim by BICEP2 of evidence for primordial gravitational waves has focused interest on the potential for early-Universe cosmology using gravitational waves. In addition to cosmic microwave background detectors, efforts are underway to carry out gravitational-wave astronomy with pulsar timing arrays, space-based detectors, and terrestrial detectors. These efforts will probe a wide ran...
متن کامل